Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.080
Filtrar
1.
Cells ; 13(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607005

RESUMO

Satellite glial cells (SGCs) are the main type of glial cells in sensory ganglia. Animal studies have shown that these cells play essential roles in both normal and disease states. In a large number of pain models, SGCs were activated and contributed to the pain behavior. Much less is known about SGCs in humans, but there is emerging recognition that SGCs in humans are altered in a variety of clinical states. The available data show that human SGCs share some essential features with SGCs in rodents, but many differences do exist. SGCs in DRG from patients suffering from common painful diseases, such as rheumatoid arthritis and fibromyalgia, may contribute to the pain phenotype. It was found that immunoglobulins G (IgG) from fibromyalgia patients can induce pain-like behavior in mice. Moreover, these IgGs bind preferentially to SGCs and activate them, which can sensitize the sensory neurons, causing nociception. In other human diseases, the evidence is not as direct as in fibromyalgia, but it has been found that an antibody from a patient with rheumatoid arthritis binds to mouse SGCs, which leads to the release of pronociceptive factors from them. Herpes zoster is another painful disease, and it appears that the zoster virus resides in SGCs, which acquire an abnormal morphology and may participate in the infection and pain generation. More work needs to be undertaken on SGCs in humans, and this review points to several promising avenues for better understanding disease mechanisms and developing effective pain therapies.


Assuntos
Artrite Reumatoide , Fibromialgia , Humanos , Camundongos , Animais , Neuroglia/fisiologia , Dor , Células Receptoras Sensoriais
2.
Nat Commun ; 15(1): 3306, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632253

RESUMO

Macroglia fulfill essential functions in the adult vertebrate brain, producing and maintaining neurons and regulating neuronal communication. However, we still know little about their emergence and diversification. We used the zebrafish D. rerio as a distant vertebrate model with moderate glial diversity as anchor to reanalyze datasets covering over 600 million years of evolution. We identify core features of adult neurogenesis and innovations in the mammalian lineage with a potential link to the rarity of radial glia-like cells in adult humans. Our results also suggest that functions associated with astrocytes originated in a multifunctional cell type fulfilling both neural stem cell and astrocytic functions before these diverged. Finally, we identify conserved elements of macroglial cell identity and function and their time of emergence during evolution.


Assuntos
Astrócitos , Peixe-Zebra , Animais , Humanos , Neurogênese/fisiologia , Neuroglia/fisiologia , Perfilação da Expressão Gênica , Mamíferos
3.
Biol Res ; 57(1): 8, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475854

RESUMO

The central nervous system (CNS) is home to neuronal and glial cells. Traditionally, glia was disregarded as just the structural support across the brain and spinal cord, in striking contrast to neurons, always considered critical players in CNS functioning. In modern times this outdated dogma is continuously repelled by new evidence unravelling the importance of glia in neuronal maintenance and function. Therefore, glia replacement has been considered a potentially powerful therapeutic strategy. Glial progenitors are at the center of this hope, as they are the source of new glial cells. Indeed, sophisticated experimental therapies and exciting clinical trials shed light on the utility of exogenous glia in disease treatment. Therefore, this review article will elaborate on glial-restricted progenitor cells (GRPs), their origin and characteristics, available sources, and adaptation to current therapeutic approaches aimed at various CNS diseases, with particular attention paid to myelin-related disorders with a focus on recent progress and emerging concepts. The landscape of GRP clinical applications is also comprehensively presented, and future perspectives on promising, GRP-based therapeutic strategies for brain and spinal cord diseases are described in detail.


Assuntos
Bainha de Mielina , Neuroglia , Neuroglia/fisiologia , Bainha de Mielina/fisiologia , Células-Tronco , Medula Espinal , Encéfalo
4.
Neuron ; 112(1): 41-55.e3, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37898123

RESUMO

Primary cilia act as antenna receivers of environmental signals and enable effective neuronal or glial responses. Disruption of their function is associated with circuit disorders. To understand the signals these cilia receive, we comprehensively mapped cilia's contacts within the human cortical connectome using serial-section EM reconstruction of a 1 mm3 cortical volume, spanning the entire cortical thickness. We mapped the "contactome" of cilia emerging from neurons and astrocytes in every cortical layer. Depending on the layer and cell type, cilia make distinct patterns of contact. Primary cilia display cell-type- and layer-specific variations in size, shape, and microtubule axoneme core, which may affect their signaling competencies. Neuronal cilia are intrinsic components of a subset of cortical synapses and thus a part of the connectome. This diversity in the structure, contactome, and connectome of primary cilia endows each neuron or glial cell with a unique barcode of access to the surrounding neural circuitry.


Assuntos
Cílios , Conectoma , Humanos , Neurônios/fisiologia , Córtex Cerebral , Neuroglia/fisiologia
5.
Neurosci Bull ; 40(1): 1-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37843774

RESUMO

Astrocytes are the largest glial population in the mammalian brain. However, we have a minimal understanding of astrocyte development, especially fate specification in different regions of the brain. Through lineage tracing of the progenitors of the third ventricle (3V) wall via in-utero electroporation in the embryonic mouse brain, we show the fate specification and migration pattern of astrocytes derived from radial glia along the 3V wall. Unexpectedly, radial glia located in different regions along the 3V wall of the diencephalon produce distinct cell types: radial glia in the upper region produce astrocytes and those in the lower region produce neurons in the diencephalon. With genetic fate mapping analysis, we reveal that the first population of astrocytes appears along the zona incerta in the diencephalon. Astrogenesis occurs at an early time point in the dorsal region relative to that in the ventral region of the developing diencephalon. With transcriptomic analysis of the region-specific 3V wall and lateral ventricle (LV) wall, we identified cohorts of differentially-expressed genes in the dorsal 3V wall compared to the ventral 3V wall and LV wall that may regulate astrogenesis in the dorsal diencephalon. Together, these results demonstrate that the generation of astrocytes shows a spatiotemporal pattern in the developing mouse diencephalon.


Assuntos
Astrócitos , Neuroglia , Camundongos , Animais , Neuroglia/fisiologia , Diencéfalo , Encéfalo , Neurônios , Mamíferos
6.
J Neurosci Methods ; 402: 110034, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072069

RESUMO

BACKGROUND: Primary neuronal cultures are used to elucidate cellular and molecular mechanisms involved in disease pathology and modulation by pharmaceuticals and nutraceuticals, and to identify novel therapeutic targets. However, preparation of primary neuronal cultures from rodent embryos is labor-intensive, and it can be difficult to produce high-quality consistent cultures. To overcome these issues, cryopreservation can be used to obtain standardized, high-quality stocks of neuronal cultures. NEW METHOD: In this study, we present a simplified cryopreservation method for rodent primary trigeminal ganglion neurons and glia from Sprague-Dawley neonates, using a 90:10 (v/v) fetal bovine serum/dimethyl sulfoxide cell freezing medium. RESULTS: Cryopreserved trigeminal ganglion cells stored for up to one year in liquid nitrogen exhibited similar neuronal and glial cell morphology to fresh cultures and retained high cell viability. Proteins implicated in inflammation and pain signaling were expressed in agreement with the reported subcellular localization. Additionally, both neurons and glial cells exhibited an increase in intracellular calcium levels in response to a depolarizing stimulus. Cryopreserved cells were also transiently transfected with reporter genes. COMPARISON WITH EXISTING METHODS: Our method is simple, does not require special reagents or equipment, will save time and money, increase flexibility in study design, and produce consistent cultures. CONCLUSIONS: This method for the preparation and cryopreservation of trigeminal ganglia results in primary cultures of neurons and glia similar in viability and morphology to fresh preparations that could be utilized for biochemical, cellular, and molecular studies, increase reproducibility, and save laboratory resources.


Assuntos
Neuroglia , Gânglio Trigeminal , Ratos , Animais , Reprodutibilidade dos Testes , Ratos Sprague-Dawley , Neuroglia/fisiologia , Neurônios/fisiologia , Criopreservação , Células Cultivadas
7.
Ann Clin Transl Neurol ; 11(2): 377-388, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38098226

RESUMO

OBJECTIVE: Postmortem examination of the essential tremor cerebellum has revealed a variety of pathological changes centered in and around Purkinje cells. Studies have predominantly focused on cerebellar neuronal connections. Bergmann glial morphology has not yet been studied in essential tremor. Among their many roles, Bergmann glia in the cerebellar cortex ensheath Purkinje cell synapses and provide neuroprotection. Specifically, the complex radial processes and lateral appendages of Bergmann glia are structural domains that modulate Purkinje cell synaptic transmission. In this study, we investigate whether Bergmann glia morphology is altered in the essential tremor cerebellum. METHODS: We applied the Golgi-Kopsch method and used computerized three-dimensional cell reconstruction to visualize Bergmann glia in the postmortem cerebellum of 34 cases and 17 controls. We quantified morphology of terminal structures (number of terminations and lateral appendage density) and morphology of radial processes (total process length, branch length, branch order, and branch volume) in each glial cell. We quantified number of branches and volume as well. RESULTS: Essential tremor cases had a 31.9% decrease in process terminations and a 35.7% decrease in lateral appendage density in Bergmann glia. Total process length and branch length did not differ between essential tremor cases and controls. We found also a reduction in number of secondary and tertiary branches and tertiary branches volume. INTERPRETATION: These findings suggest that Bergmann glia in essential tremor cases have more alterations in their terminal structures, with a relative preservation of radial processes, and highlight a potential role for these astrocytes in the disease pathophysiology.


Assuntos
Tremor Essencial , Humanos , Neuroglia/fisiologia , Células de Purkinje , Astrócitos , Cerebelo
8.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G228-G246, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147796

RESUMO

Ischemic damage to the intestinal epithelial barrier, such as in necrotizing enterocolitis or small intestinal volvulus, is associated with higher mortality rates in younger patients. We have recently reported a powerful pig model to investigate these age-dependent outcomes in which mucosal barrier restitution is strikingly absent in neonates but can be rescued by direct application of homogenized mucosa from older, juvenile pigs by a yet-undefined mechanism. Within the mucosa, a postnatally developing network of enteric glial cells (EGCs) is gaining recognition as a key regulator of the mucosal barrier. Therefore, we hypothesized that the developing EGC network may play an important role in coordinating intestinal barrier repair in neonates. Neonatal and juvenile jejunal mucosa recovering from surgically induced intestinal ischemia was visualized by scanning electron microscopy and the transcriptomic phenotypes were assessed by bulk RNA sequencing. EGC network density and glial activity were examined by Gene Set Enrichment Analysis, three-dimensional (3-D) volume imaging, and Western blot and its function in regulating epithelial restitution was assessed ex vivo in Ussing chamber using the glia-specific inhibitor fluoroacetate (FA), and in vitro by coculture assay. Here we refine and elaborate our translational model, confirming a neonatal phenotype characterized by a complete lack of coordinated reparative signaling in the mucosal microenvironment. Furthermore, we report important evidence that the subepithelial EGC network changes significantly over the early postnatal period and demonstrate that the proximity of a specific functional population of EGC to wounded intestinal epithelium contributes to intestinal barrier restitution following ischemic injury.NEW & NOTEWORTHY This study refines a powerful translational pig model, defining an age-dependent relationship between enteric glia and the intestinal epithelium during intestinal ischemic injury and confirming an important role for enteric glial cell (EGC) activity in driving mucosal barrier restitution. This study suggests that targeting the enteric glial network could lead to novel interventions to improve recovery from intestinal injury in neonatal patients.


Assuntos
Intestino Delgado , Neuroglia , Humanos , Animais , Recém-Nascido , Suínos , Neuroglia/fisiologia , Intestinos , Mucosa Intestinal , Jejuno , Isquemia
9.
Science ; 382(6677): eadf7429, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38127757

RESUMO

During Drosophila aversive olfactory conditioning, aversive shock information needs to be transmitted to the mushroom bodies (MBs) to associate with odor information. We report that aversive information is transmitted by ensheathing glia (EG) that surround the MBs. Shock induces vesicular exocytosis of glutamate from EG. Blocking exocytosis impairs aversive learning, whereas activation of EG can replace aversive stimuli during conditioning. Glutamate released from EG binds to N-methyl-d-aspartate receptors in the MBs, but because of Mg2+ block, Ca2+ influx occurs only when flies are simultaneously exposed to an odor. Vesicular exocytosis from EG also induces shock-associated dopamine release, which plays a role in preventing formation of inappropriate associations. These results demonstrate that vesicular glutamate released from EG transmits negative valence information required for associative learning.


Assuntos
Aprendizagem da Esquiva , Condicionamento Psicológico , Drosophila melanogaster , Neuroglia , Olfato , Animais , Aprendizagem da Esquiva/fisiologia , Condicionamento Psicológico/fisiologia , Drosophila melanogaster/fisiologia , Glutamatos , Corpos Pedunculados/fisiologia , Neuroglia/fisiologia , Odorantes , Olfato/fisiologia
10.
Development ; 150(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37997694

RESUMO

Identification of signaling events that contribute to innate spinal cord regeneration in zebrafish can uncover new targets for modulating injury responses of the mammalian central nervous system. Using a chemical screen, we identify JNK signaling as a necessary regulator of glial cell cycling and tissue bridging during spinal cord regeneration in larval zebrafish. With a kinase translocation reporter, we visualize and quantify JNK signaling dynamics at single-cell resolution in glial cell populations in developing larvae and during injury-induced regeneration. Glial JNK signaling is patterned in time and space during development and regeneration, decreasing globally as the tissue matures and increasing in the rostral cord stump upon transection injury. Thus, dynamic and regional regulation of JNK signaling help to direct glial cell behaviors during innate spinal cord regeneration.


Assuntos
Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Animais , Larva , Mamíferos , Regeneração Nervosa/fisiologia , Neuroglia/fisiologia , Medula Espinal , Peixe-Zebra/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno
11.
PLoS Biol ; 21(11): e3002352, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37943883

RESUMO

Neural stem cells (NSCs) reside in a defined cellular microenvironment, the niche, which supports the generation and integration of newborn neurons. The mechanisms building a sophisticated niche structure around NSCs and their functional relevance for neurogenesis are yet to be understood. In the Drosophila larval brain, the cortex glia (CG) encase individual NSC lineages in membranous chambers, organising the stem cell population and newborn neurons into a stereotypic structure. We first found that CG wrap around lineage-related cells regardless of their identity, showing that lineage information builds CG architecture. We then discovered that a mechanism of temporally controlled differential adhesion using conserved complexes supports the individual encasing of NSC lineages. An intralineage adhesion through homophilic Neuroglian interactions provides strong binding between cells of a same lineage, while a weaker interaction through Neurexin-IV and Wrapper exists between NSC lineages and CG. Loss of Neuroglian results in NSC lineages clumped together and in an altered CG network, while loss of Neurexin-IV/Wrapper generates larger yet defined CG chamber grouping several lineages together. Axonal projections of newborn neurons are also altered in these conditions. Further, we link the loss of these 2 adhesion complexes specifically during development to locomotor hyperactivity in the resulting adults. Altogether, our findings identify a belt of adhesions building a neurogenic niche at the scale of individual stem cell and provide the proof of concept that niche properties during development shape adult behaviour.


Assuntos
Drosophila , Células-Tronco Neurais , Animais , Neurônios/metabolismo , Neurogênese/fisiologia , Células-Tronco Neurais/metabolismo , Neuroglia/fisiologia , Encéfalo , Nicho de Células-Tronco/fisiologia
12.
Science ; 382(6670): 527-528, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37917691
13.
Nat Rev Neurosci ; 24(12): 733-746, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857838

RESUMO

Experience sculpts brain structure and function. Activity-dependent modulation of the myelinated infrastructure of the nervous system has emerged as a dimension of adaptive change during childhood development and in adulthood. Myelination is a richly dynamic process, with neuronal activity regulating oligodendrocyte precursor cell proliferation, oligodendrogenesis and myelin structural changes in some axonal subtypes and in some regions of the nervous system. This myelin plasticity and consequent changes to conduction velocity and circuit dynamics can powerfully influence neurological functions, including learning and memory. Conversely, disruption of the mechanisms mediating adaptive myelination can contribute to cognitive impairment. The robust effects of neuronal activity on normal oligodendroglial precursor cells, a putative cellular origin for many forms of glioma, indicates that dysregulated or 'hijacked' mechanisms of myelin plasticity could similarly promote growth in this devastating group of brain cancers. Indeed, neuronal activity promotes the pathogenesis of many forms of glioma in preclinical models through activity-regulated paracrine factors and direct neuron-to-glioma synapses. This synaptic integration of glioma into neural circuits is central to tumour growth and invasion. Thus, not only do neuron-oligodendroglial interactions modulate neural circuit structure and function in the healthy brain, but neuron-glioma interactions also have important roles in the pathogenesis of glial malignancies.


Assuntos
Glioma , Neurônios , Humanos , Neurônios/fisiologia , Oligodendroglia/fisiologia , Bainha de Mielina/fisiologia , Neuroglia/fisiologia
14.
Cells ; 12(20)2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37887319

RESUMO

Binge or chronic alcohol consumption causes neuroinflammation and leads to alcohol use disorder (AUD). AUD not only affects the central nervous system (CNS) but also leads to pathologies in the peripheral and enteric nervous systems (ENS). Thus, understanding the mechanism of the immune signaling to target the effector molecules in the signaling pathway is necessary to alleviate AUD. Growing evidence shows that excessive alcohol consumption can activate neuroimmune cells, including microglia, and change the status of neurotransmitters, affecting the neuroimmune system. Microglia, like peripheral macrophages, are an integral part of the immune defense and represent the reticuloendothelial system in the CNS. Microglia constantly survey the CNS to scavenge the neuronal debris. These cells also protect parenchymal cells in the brain and spinal cord by repairing nerve circuits to keep the nervous system healthy against infectious and stress-derived agents. In an activated state, they become highly dynamic and mobile and can modulate the levels of neurotransmitters in the CNS. In several ways, microglia, enteric glial cells, and macrophages are similar in terms of causing inflammation. Microglia also express most of the receptors that are constitutively present in macrophages. Several receptors on microglia respond to the inflammatory signals that arise from danger-associated molecular patterns (DAMPs), pathogen-associated molecular patterns (PAMPs), endotoxins (e.g., lipopolysaccharides), and stress-causing molecules (e.g., alcohol). Therefore, this review article presents the latest findings, describing the roles of microglia and enteric glial cells in the brain and gut, respectively, and their association with neurotransmitters, neurotrophic factors, and receptors under the influence of binge and chronic alcohol use, and AUD.


Assuntos
Eixo Encéfalo-Intestino , Microglia , Humanos , Microglia/metabolismo , Neuroglia/fisiologia , Inflamação/metabolismo , Etanol/metabolismo , Neurotransmissores/metabolismo
15.
Curr Biol ; 33(19): R1016-R1018, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37816322

RESUMO

Neurons must access the environment to gather information, but this exposure must be carefully managed. New work finds that glial cells, the non-neuronal component of the nervous system, control environmental access by stage- and sex-specific patterning of the extracellular matrix.


Assuntos
Neuroglia , Neurônios , Masculino , Feminino , Humanos , Neurônios/fisiologia , Neuroglia/fisiologia , Matriz Extracelular/fisiologia , Biologia do Desenvolvimento
16.
Proc Natl Acad Sci U S A ; 120(34): e2219150120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579149

RESUMO

Glial cells account for between 50% and 90% of all human brain cells, and serve a variety of important developmental, structural, and metabolic functions. Recent experimental efforts suggest that astrocytes, a type of glial cell, are also directly involved in core cognitive processes such as learning and memory. While it is well established that astrocytes and neurons are connected to one another in feedback loops across many timescales and spatial scales, there is a gap in understanding the computational role of neuron-astrocyte interactions. To help bridge this gap, we draw on recent advances in AI and astrocyte imaging technology. In particular, we show that neuron-astrocyte networks can naturally perform the core computation of a Transformer, a particularly successful type of AI architecture. In doing so, we provide a concrete, normative, and experimentally testable account of neuron-astrocyte communication. Because Transformers are so successful across a wide variety of task domains, such as language, vision, and audition, our analysis may help explain the ubiquity, flexibility, and power of the brain's neuron-astrocyte networks.


Assuntos
Astrócitos , Neurônios , Humanos , Astrócitos/fisiologia , Neurônios/fisiologia , Neuroglia/fisiologia , Encéfalo
17.
Neurosci Lett ; 812: 137360, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37393007

RESUMO

In the body, nerve tissue is not only present in the central nervous system, but also in the periphery. The enteric nervous system (ENS) is a highly organized intrinsic network of neurons and glial cells grouped to form interconnected ganglia. Glial cells in the ENS are a fascinating cell population: their neurotrophic role is well established, as well as their plasticity in specific circumstances. Gene expression profiling studies indicate that ENS glia retain neurogenic potential. The identification of neurogenic glial subtype(s) and the molecular basis of glia-derived neurogenesis may have profound biological and clinical implications. In this review, we discuss the potential of using gene-editing for ENS glia and cell transplantation as therapies for enteric neuropathies. Glia in the ENS: target or tool for nerve tissue repair?


Assuntos
Sistema Nervoso Entérico , Tecido Nervoso , Neuroglia/fisiologia , Neurônios/metabolismo , Sistema Nervoso Entérico/metabolismo , Neurogênese/fisiologia
18.
Adv Exp Med Biol ; 1415: 473-477, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440074

RESUMO

In recent years, reprogramming Müller glia by overexpressing Ascl1 and other transcription factors has shown promise for the regeneration of postmitotic retinal neurons, primarily bipolar cells, following injury. Müller glial proliferation and efficiency of neuronal differentiation can be modified by the use of small molecules in various systems. The molecules and pathways studied thus far share remarkable consistency with astrocytes. In this mini review, we provide an overview on the modulation of Müller glial proliferation and cell fate using small molecules in injury and reprogramming. We also compare these observations to what has been observed in astrocytes.


Assuntos
Células Ependimogliais , Neuroglia , Células Ependimogliais/fisiologia , Neuroglia/fisiologia , Diferenciação Celular/fisiologia , Neurogênese/fisiologia , Proliferação de Células/fisiologia , Retina
19.
Adv Exp Med Biol ; 1415: 577-582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440089

RESUMO

Endogenous regeneration strategies to replace lost neurons hold great promise for treating neurodegenerative disorders. In the majority of cases, neural regeneration is induced by converting resident glial cells into neurogenic precursors. This review will outline how proneural bHLH transcription factors can be used to reprogram glia in the brain and retina into a source for new neurons.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neuroglia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/fisiologia , Neuroglia/fisiologia , Regeneração Nervosa/fisiologia , Neurônios/fisiologia , Retina/fisiologia
20.
Front Neural Circuits ; 17: 1138358, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334059

RESUMO

The anterior cingulate cortex (ACC) plays a crucial role in encoding, consolidating and retrieving memories related to emotionally salient experiences, such as aversive and rewarding events. Various studies have highlighted its importance for fear memory processing, but its circuit mechanisms are still poorly understood. Cortical layer 1 (L1) of the ACC might be a particularly important site of signal integration, since it is a major entry point for long-range inputs, which is tightly controlled by local inhibition. Many L1 interneurons express the ionotropic serotonin receptor 3a (5HT3aR), which has been implicated in post-traumatic stress disorder and in models of anxiety. Hence, unraveling the response dynamics of L1 interneurons and subtypes thereof during fear memory processing may provide important insights into the microcircuit organization regulating this process. Here, using 2-photon laser scanning microscopy of genetically encoded calcium indicators through microprisms in awake mice, we longitudinally monitored over days the activity of L1 interneurons in the ACC in a tone-cued fear conditioning paradigm. We observed that tones elicited responses in a substantial fraction of the imaged neurons, which were significantly modulated in a bidirectional manner after the tone was associated to an aversive stimulus. A subpopulation of these neurons, the neurogliaform cells (NGCs), displayed a net increase in tone-evoked responses following fear conditioning. Together, these results suggest that different subpopulations of L1 interneurons may exert distinct functions in the ACC circuitry regulating fear learning and memory.


Assuntos
Condicionamento Clássico , Medo , Giro do Cíngulo , Interneurônios , Animais , Camundongos , Medo/fisiologia , Giro do Cíngulo/citologia , Giro do Cíngulo/fisiologia , Interneurônios/fisiologia , Memória/fisiologia , Condicionamento Clássico/fisiologia , Masculino , Sinalização do Cálcio , Receptores de Serotonina/metabolismo , Neuroglia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...